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TBC: A Clustering Algorithm Based on Prokaryotic Taxonomy§

High-throughput DNA sequencing technologies have rev-
olutionized the study of microbial ecology. Massive se-
quencing of PCR amplicons of the 16S rRNA gene has been 
widely used to understand the microbial community struc-
ture of a variety of environmental samples. The resulting 
sequencing reads are clustered into operational taxonomic 
units that are then used to calculate various statistical indices 
that represent the degree of species diversity in a given 
sample. Several algorithms have been developed to perform 
this task, but they tend to produce different outcomes. 
Herein, we propose a novel sequence clustering algorithm, 
namely Taxonomy-Based Clustering (TBC). This algorithm 
incorporates the basic concept of prokaryotic taxonomy in 
which only comparisons to the type strain are made and used 
to form species while omitting full-scale multiple sequence 
alignment. The clustering quality of the proposed method was 
compared with those of MOTHUR, BLASTClust, ESPRIT- 
Tree, CD-HIT, and UCLUST. A comprehensive comparison 
using three different experimental datasets produced by 
pyrosequencing demonstrated that the clustering obtained 
using TBC is comparable to those obtained using MOTHUR 
and ESPRIT-Tree and is computationally efficient. The pro-
gram was written in JAVA and is available from http://sw. 
ezbiocloud.net/tbc.

Keywords: TBC, clustering algorithm, OTU, CD-HIT, 
UCLUST, MOTHUR, ESPRIT-Tree, BLASTClust, pyrose-
quencing, metagenome

Introduction

Thanks to recent advancements in DNA sequencing tech-

nology, methods for the elucidation of microbial community 
structures have shifted from indirect methods, such as 
DGGE, t-RFLP, and DNA microarrays, to direct methods, 
that is, the sequencing of amplified phylogenetic marker 
genes. The Roche GS FLX Titanium system, for example, 
can generate one million sequencing reads of 400–500 bp 
in length per run (Metzker, 2010). Massive sequencing of 
PCR amplicons targeting the 16S rRNA gene has been 
widely used to dissect the microbial community structure 
of a variety of environmental samples. For example, the 
microbial inhabitants of the human body and natural envi-
ronments have been successfully surveyed using massive 
pyrosequencing of the 16S rRNA genes amplified from 
metagenomic DNA (Petrosino et al., 2009).
  Following massive gene sequencing, fundamentally impor-
tant ecological aspects of microbial diversity are calculated. 
“Alpha” diversity refers to the diversity within a sample/ 
community, whereas “beta” diversity is defined as the diver-
sity among multiple samples/communities, thus reflecting how 
samples are related (Hamady and Knight, 2009). Measuring 
these diversity-related indices has been considered essential 
in microbial community analysis and ecological studies. 
There are two methods for calculating diversity indexes, 
namely taxon-based and phylogeny-based approaches. The 
first approach calculates diversity indices by clustering in-
dividual sequences into a group, named an operational taxo-
nomic unit (OTU), and the latter does so by considering the 
phylogenetic relationships of each sequence. Although a 
phylogeny-based approach may be more informative in an 
evolutionary context, due to the phylogeny-based approach’s 
complexity, the taxon-based approach is more widely used.
  Taxon-based estimation of “alpha” diversity can be divided 
into two separate steps. The first step involves the cluster-
ing of sequences into OTUs. The resultant OTUs with their 
members (sequences) can then be used to calculate various 
non-parametric and parametric diversity indexes, including 
Chao1 (Chao, 1984) and ACE (Chao and Lee, 1992; Chao 
et al., 1993).
  The clustering of multiple sequences is generally achieved by 
multiple sequence alignment (MSA), followed by the calcu-
lation of distance matrices (Bacon and Anderson, 1986). The 
most popular algorithms for this approach are the nearest- 
neighbor clustering and furthest-neighbor clustering algo-
rithms implemented in the MOTHUR program (Schloss et 
al., 2009), which uses a distance matrix generated from the 
MSA as an input file. Distance matrices can be generated 
by various computer programs, such as ClustalW (Thompson 
et al., 1994) and MUSCLE (Edgar, 2004). Although this ap-
proach has a sound statistical basis, it has a high computa-
tional cost. In fact, MSA-based clustering is not practical 
for the analysis of the large number of sequences generated 
by Roche 454 sequencing.
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  Therefore, MSA-free clustering algorithms such as BLAST-
Clust (Altschul et al., 1997), ESPRIT-Tree (Cai and Sun, 
2011), CD-HIT (Li and Godzik, 2006), and UCLUST (Edgar, 
2010) have been introduced and have become widely used. 
BLASTClust employs the popular BLAST program to iden-
tify similar sequences that are then used to form a cluster. 
ESPRIT-Tree partitions an input sequence space into a set 
of subspaces using a partition tree that is constructed using 
a pseudo-metric and then recursively refines the clustering 
structure in these subspaces. To avoid exhaustive computa-
tion of pairwise distances between clusters, the program 
represents each cluster of sequences as a probabilistic se-
quence and defines a set of operations to align these proba-
bilistic sequences and to compute the genetic distances be-
tween them. CD-HIT and UCLUST utilize a greedy algo-
rithm (Edgar, 2010) that can estimate the similarity between 
two sequences without performing pairwise alignment of all 
pairs of sequences. The similarity shared by two sequences 
is estimated by counting the minimum number of identical 
short substrings, called ‘words’, stored in the index table. 
Only when this number is greater than the required value is 
an alignment performed to confirm their sequence identity. 
Using this short word-filtering algorithm (Li et al., 2001, 
2002), many unnecessary pairwise alignments can be avoided. 
In CD-HIT and UCLUST, the sequences are sorted by length 
so that the longer sequences have a greater chance of be-
coming representative sequences of clusters, increasing the 
inclusiveness of clusters. A query sequence is compared to 
the representative sequence and assigned to the cluster if the 
similarity between the two sequences is above the predefined 
threshold; otherwise, the query sequence becomes the rep-
resentative sequence of a new cluster. These clustering pro-
grams have been broadly used in many ecological studies 
[e.g., MOTHUR (Ling et al., 2010), BLASTClust (Kuenne 
et al., 2007), CD-HIT (Cameron et al., 2007; Li et al., 2008; 
Yang et al., 2009), UCLUST (Edgar, 2010)].
  In microbial ecology, an OTU often corresponds to a pro-
karyotic species, which is defined as a group of organisms 
with high genetic homology. Such a relationship can be de-
fined by either DNA-DNA hybridization (DDH) (Wayne 
et al., 1987) or 16S rRNA gene sequence similarity because 
a prokaryotic species is defined as a group of genetically re-
lated strains with the type strain as a centroid. In other 
words, strains of a prokaryotic species are those strains ge-
netically related to the type strain within certain criteria 
(DDH or 16S rRNA gene similarity values). Therefore, clus-
tering algorithms that utilize the type strain concept in the 
prokaryotic species definition should be more rational and 
taxonomically sound.
  In this study, we devised a new sequence-clustering algo-
rithm, namely Taxonomy-Based Clustering (TBC), which 
imitates the prokaryotic classification procedure while omit-
ting the MSA and the calculation of a full distance matrix. 
The clustering qualities of MOTHUR, BLASTClust, ESPRIT- 
Tree, CD-HIT and UCLUST were compared with that of the 
TBC algorithm using test datasets produced by pyrosequen-
cing. The results of our evaluation study showed that TBC 
provides an accurate estimate of microbial diversity indices 
with a reasonable computing cost compared with other 
methods.

Materials and Methods

Sequencing and pre-process of datasets
Three different metagenomic DNAs were extracted from 
water, soil and kimchi samples using a commercial kit 
(Mobio). The extracted genomic DNA (gDNA) was ampli-
fied using primers targeting the V1 to V3 regions of the 
bacterial 16S rRNA gene as described previously (Chun et 
al., 2010). The DNA sequencing was performed using the 
Roche GS FLX Titanium system according to the manu-
facturer’s instructions. After trimming the barcode, linker, 
and PCR primer sequences from the raw sequences, the se-
quences with more than one ambiguous base or read-lengths 
less than 300 bp were removed from the subsequent analyses. 
Chimeric sequences were detected by comparison of the 
identification results of the first and second halves of query 
sequences. When two identification results indicate taxono-
mically different taxa (e.g., different orders), the query se-
quence was considered chimeric and was removed from 
the final dataset. The resultant sequences were subjected to 
random subsampling to equalize the sequencing depth to 
1,000 reads per sample.

Sequence clustering using conventional methods
Five conventional clustering methods, namely MOTHUR, 
BLASTClust, ESPRIT-Tree, CD-HIT, and UCLUST, were 
tested together with TBC for comparative analysis. A 16S 
rRNA gene sequence similarity value of 0.97 (=97%) was used 
as the sequence identity threshold for defining species-level 
OTUs. To produce an input distance matrix for MOTHUR, 
alignments were performed using ClustalW (version 1.82), 
and the distance matrix was calculated using DNADIST 
(version 3.69) in the PHYLIP package (version 3.69) (Retief, 
2000). Sequences were assigned to OTUs using the furthest- 
neighbor clustering algorithm implemented in the MOTHUR 
package (Schloss et al., 2009). Statistical inferences of spe-
cies richness including rarefaction analysis (Hurlbert, 1971), 
Chao1 (Chao, 1984) and ACE (Chao et al., 1993) were per-
formed using MOTHUR.

Taxonomy-Based Clustering (TBC) algorithm
The TBC algorithm is composed of the following steps:
(1) Identical sequences were clustered while ignoring ho-

mopolymeric errors.
(2) The longest sequence of each cluster was set as the rep-

resentative sequence of the given cluster.
(3) The clusters were sorted based on the number of se-

quences included.
(4) Out of the remaining clusters, the cluster containing the 

largest number of sequences (query cluster) was searched 
against representative sequences of all remaining clusters 
using BLASTN (Altschul et al., 1997). Pairwise nucleo-
tide sequence similarity values were calculated according 
to Myers and Miller (1988). For a pair of sequences with 
a certain BLASTN identity value (e.g., 93%), time-con-
suming pairwise sequence alignment can be omitted.

(5) If two clusters show ≥97% sequence similarity for rep-
resentative sequences, the cluster with fewer sequences 
is merged with the larger cluster, and a new database 
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Fig. 1. A mathematical way to represent 
the overall OTU profile to compare the 
clustering results of different algorithms.
An n by n square matrix composed of n 
sequences in a given sample was con-
structed for each method. If sequences 
ni and nj belonged to the same cluster 
(=OTU), the position (i, j) in the matrix
was coded 1; otherwise, this value was 
coded 0. Once the matrices representing
the OTU profiles were completed, the 
similarity between profiles was calcu-
lated by dividing the number of the po-
sitions (i, j) shared by the two matrices 
by the total number of sequences in the 
sample.

for the BLASTN search is generated.
(6) Steps (4) and (5) were repeated until the last cluster was 

considered.

Comparative analysis of clustering results
To assess the quality of the clustering algorithms, a pair-
wise sequence similarity matrix was created as a reference 
dataset. The pairwise similarities of all pairwise combina-
tions within a sample was calculated by the global pairwise 
alignment method (Myers and Miller, 1988). To evaluate 
the quality of the clustering algorithms resulting in OTU 
formation, we devised two parameters, namely false con-
junction and false disjunction. False conjunction indicates 
the ratio of the presence of two sequences (=misjoined 
pair) with <97% sequence similarity in the same OTU and 
is given by:

∑ n
i=1 (Number of mis - joined pair of sequences in an OTUi) 

/  ∑ n
i=1 (Number of all pair of sequences in an OTUi) 

  In contrast, false disjunction indicates the incorrect sepa-
ration of two sequences into different OTUs when they 
show ≥97% sequence similarity and is given by:

∑ n
i, j=1 (Number of pairs showing pairwise similarities of ≥ 97% 

while each belonging to OTUi and OTUj) / ∑ n
i, j=1 (Number of  

pairwise similarities between sequences in OTUi and OTUj) 

  A benchmark study was performed on a Linux CentOS 64 
bit server housing four hexa-core Intel Xeon 5300 Series 
Processors and 64 GB RAM. Raw sequencing datasets from 
water, soil, and kimchi were used for the performance time 
evaluation. In the case of MOTHUR, the processing time 
includes the execution time required for multiple align-
ments and the generation of the distance matrix.
  To compare the clustering outcomes of the different algo-
rithms, a mathematical method, called the OTU profile, was 
devised to represent the overall OTU profile in a sample 

(Fig. 1). First, a 1,000 by 1,000 square matrix composed of 
1,000 sequences in a sample was constructed for each 
sample. If sequences ni and nj belong to the same cluster, 
the position (i, j) in the matrix was 1; otherwise, this value 
was 0. Once the matrices representing the OTU profile 
were completed, the similarity between these profiles was 
calculated by dividing the number of the positions (i, j) 
shared by the two matrices by the total number of sequences 
in the sample. Pairwise similarity values among the six dif-
ferent algorithms were generated and clustered using the 
unweighted pair group method with the arithmetic mean 
(UPGMA).

Implementation and availability
We implemented the method described herein in a soft-
ware tool. The program was written in JAVA and tested on 
the Linux and Microsoft Window operating systems. The 
software and the datasets used in this study are available 
from the website http://sw.ezbiocloud.net/tbc.

Results and Discussion

Dataset and pairwise sequence similarity matrix for each 
sample
A number of raw reads were obtained from water (6,339 
reads), soil (4,651), and kimchi (2,661) samples, and 1,000 
high-quality sequences were randomly subsampled. A ref-
erence data matrix comprised 499,500 pairwise similarities 
within a sample. The percentages of pairwise similarities of 
≥97% within each matrix were 6.8, 9.1 and 83.8%, respec-
tively.

Clustering accuracy
The six different clustering algorithms were applied to the 
subsampled datasets, and the resultant OTUs were compared. 
The numbers of OTUs produced by different methods are 
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Table 2. The accuracy of the six clustering algorithms. False conjunction 
indicates the ratio of incorrect grouping of distant (<97% similarity) se-
quences together in the same OTU. False disjunction indicates the ratio 
of incorrect separation of similar (97% similarity) sequences into different
OTUs.
Data sets Methods False conjunction (%) False disjunction (%)
Water TBC 2.12 7.47

CD-HIT 0.36 34.47
UCLUST 0.48 64.14

MOTHUR 3.48 11.58
BLASTClust 26.33 8.62
ESPRIT-Tree 3.92 12.52

Soil TBC 0.52 1.07
CD-HIT 1.38 33.87
UCLUST 0.49 55.66

MOTHUR 3.74 3.43
BLASTClust 2.54 1.71
ESPRIT-Tree 4.92 6.87

Kimchi TBC 0.94 1.31
CD-HIT 0.46 65.78
UCLUST 0.04 11.99

MOTHUR 1.12 2.94
BLASTClust 9.92 2.51
ESPRIT-Tree 1.34 4.79

Table 1. Numbers of OTUs produced by six different clustering methods. 
Each dataset contains 1,000 pyro-sequences, and the cutoff for the OTU 
definition was 0.97 (97%).

Methods
Data sets

Water Soil Kimchi
TBC 378 265 13

CD-HIT 405 279 20
UCLUST 413 285 19

MOTHUR 382 272 13
BLASTClust 375 282 6
ESPRIT-Tree 371 260 16

summarized in Table 1. The water sample contained the 
highest number of species, ranging from 375 to 413 OTUs 
depending on the clustering algorithm used, and the kimchi 
sample had the lowest values, ranging from 6 to 20 OTUs. 
In all samples examined in this study, the CD-HIT and 
UCLUST programs produced the highest number of OTUs. 
This trend is confirmed by the rarefaction curves (Supple-
mentary data Fig. S1).
  The false conjunction ratio values, which indicate the de-
gree of incorrect assignment of two distant sequences in the 
same OTU, were highest for BLASTClust (12.9% on aver-
age), followed by MOTHUR (2.8%), ESPRIT-Tree (2.3%), 
TBC (1.2%), CD-HIT (0.7%), and UCLUST (0.3%) (Table 2). 
The poor performance of the BLASTClust program may 
result from its clustering algorithm, in which a new sequence 
is joined to a cluster if any member of the cluster has se-
quence similarity over the cutoff value.
  The lowest false disjunction ratio values, which indicate 
the degree of incorrect separation of similar sequences into 
different OTUs, was obtained for TBC (3.3% on average), 
followed by the values for BLASTClust (4.3%) and MOTHUR 
(6.0%), ESPRIT-Tree (9.72%), UCLUST (43.9%), and CD- 

HIT (44.7%) (Table 2). The significantly higher values ob-
tained for CD-HIT and UCLUST indicated that the two al-
gorithms produced excessively divided OTUs, many of 
which should be merged.
  
Benchmarking of the running times
Based on the benchmark study using the subsampled data-
set, UCLUST and CD-HIT had the fastest running times. 
MOTHUR and BLASTClust were extremely slow as a result 
of the multiple alignments produced and distance matrix 
generation in MOTHUR and the exhaustive nature of the 
pairwise sequence comparison in BLASTClust. The TBC 
method was approximately 1/90-fold slower than UCLUST 
and approximately 4-, 45-, and 59-fold faster than ESPRIT- 
Tree, MOTHUR and BLASTClust, respectively.

Similarity of the clustering results among the six different 
algorithms
To visualize the resemblance of the clustering outcomes of 
the six clustering algorithms, a UPGMA dendrogram (Fig. 
2) was constructed from the similarity values based on the 
OTU profile method (Fig. 1). Based on the outcome of the 
clustering, TBC, MOTHUR, and ESPRIT-Tree always pro-
duced similar clustering results, whereas CD-HIT and 
UCLUST generated significantly different sets of OTUs 
from the same datasets. The latter two programs yielded 
similar clustering patterns, indicating that they use similar 
word-based fast clustering algorithms. The clustering out-
come of BLASTClust is substantially different from those 
of all other methods.

Conclusion

In this study, we developed a novel sequence clustering al-
gorithm that mimics the prokaryotic classification principle 
in which only the genetic similarity between the type strain 
(=representative sequence) and the query sequence is used 
for species recognition (OTU formation). Based on the false 
conjunction and false disjunction ratios, our TBC method 
showed good performance compared with other clustering 
methods. The UCLUST and CD-HIT programs are best 
with respect to computing time but always produce the 
largest number of OTUs in which two similar (97% sim-
ilarity) sequences may be assigned to two different OTUs. 
Based on a comprehensive benchmark study, BLASTClust 
exhibited the worst performance, with both the slowest 
run-time and the highest false conjunction ratio.
  The generation of OTUs from massive pyrosequencing data 
is a key step in microbial ecological studies, as important 
statistical measures are derived from the generated OTU. 
However, there is no formal criterion specifying the best 
method by which to cluster sequences into OTUs. Here, we 
develop and introduce an algorithm that mimics the way 
we classify bacteria in nature. This classification is possible 
by (i) assigning a representative sequence for each cluster 
and (ii) only considering pairwise sequence similarities be-
tween these representative sequences and other sequences. 
Based on a comprehensive comparison with five of the most 
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Fig. 2. UPGMA dendrogram showing 
the resemblance of the clustering results 
of the six algorithms. 

popular clustering programs, it is fair to say that our TBC 
method generates good-quality clustering, has a reasonable 
run time and yields outcomes similar to those of MOTHUR 
(with CLUSTAL MSA), which is the most robust ap-
proach, while requiring significantly less computing cost 
than MOTHUR. The TBC algorithm is implemented in 
JAVA and can be used as a standalone program in the 
Linux and Microsoft Windows operating systems.

Acknowledgements

This work was supported by Priority Research Centers 
Program (#2010-0094020) and a National Research Foun-
dation grant (#2011-0016498) through the National Research 
Foundation of Korea, funded by the Ministry of Education, 
Science, and Technology, Republic of Korea.

References

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., 
Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI- 
BLAST: a new generation of protein database search programs. 
Nucleic Acids Res. 25, 3389–3402.

Bacon, D.J. and Anderson, W.F. 1986. Multiple sequence alignment. 
J. Mol. Biol. 191, 153–161.

Cai, Y. and Sun, Y. 2011. ESPRIT-Tree: hierarchical clustering 
analysis of millions of 16S rRNA pyrosequences in quasilinear 
computational time. Nucleic Acids Res. doi:10.1093/nar/gkr349.

Cameron, M., Bernstein, Y., and Williams, H.E. 2007. Clustered 
sequence representation for fast homology search. J. Comput. 
Biol. 14, 594–614.

Chao, A. 1984. Non-parametric estimation of the number of 
classes in a population. Scand. J. Stat. 11, 265–270.

Chao, A.L. and Lee, S.M. 1992. Estimating the number of classes 
via sample coverage. J. Am. Stat. Assoc. 87, 210–217.

Chao, A.M., Ma, M.C., and Yang, M.C.K. 1993. Stopping rules 
and estimation for recapture debugging with unequal failure 
rates. Biometrika 80, 193–201.

Chun, J., Kim, K.Y., Lee, J.H., and Choi, Y. 2010. The analysis of 
oral microbial communities of wild-type and toll-like receptor 
2-deficient mice using a 454 GS FLX Titanium pyrosequencer. 
BMC Microbiol. 10, 101.

Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with 
high accuracy and high throughput. Nucleic Acids Res. 32, 1792– 
1797.

Edgar, R.C. 2010. Search and clustering orders of magnitude faster 
than BLAST. Bioinformatics 26, 2460–2461.

Hamady, M. and Knight, R. 2009. Microbial community profiling 

for human microbiome projects: Tools, techniques, and chal-
lenges. Genome Res. 19, 1141–1152.

Hurlbert, S.H. 1971. The non-concept of species diversity: a cri-
tique and alternative parameters. Ecology 52, 577–586.

Kuenne, C.T., Ghai, R., Chakraborty, T., and Hain, T. 2007. GECO 
– linear visualization for comparative genomics. Bioinformatics 
23, 125–126.

Li, W. and Godzik, A. 2006. Cd-hit: a fast program for clustering 
and comparing large sets of protein or nucleotide sequences. 
Bioinformatics 22, 1658–1659.

Li, W., Jaroszewski, L., and Godzik, A. 2001. Clustering of highly 
homologous sequences to reduce the size of large protein data-
bases. Bioinformatics 17, 282–283.

Li, W., Jaroszewski, L., and Godzik, A. 2002. Sequence clustering 
strategies improve remote homology recognitions while reducing 
search times. Protein Eng. 15, 643–649.

Li, W., Wooley, J.C., and Godzik, A. 2008. Probing metagenomics 
by rapid cluster analysis of very large datasets. PLoS One 3, 
e3375.

Ling, Z., Kong, J., Liu, F., Zhu, H., Chen, X., Wang, Y., Li, L., 
Nelson, K.E., Xia, Y., and Xiang, C. 2010. Molecular analysis of 
the diversity of vaginal microbiota associated with bacterial 
vaginosis. BMC Genomics 11, 488.

Metzker, M.L. 2010. Sequencing technologies - the next generation. 
Nat. Rev. Genet. 11, 31–46.

Myers, E.W. and Miller, W. 1988. Optimal alignments in linear 
space. Comput. Appl. Biosci. 4, 11–17.

Petrosino, J.F., Highlander, S., Luna, R.A., Gibbs, R.A., and Ver-
salovic, J. 2009. Metagenomic pyrosequencing and microbial 
identification. Clin. Chem. 55, 856–866.

Retief, J.D. 2000. Phylogenetic analysis using PHYLIP. Methods 
Mol. Biol. 132, 243–258.

Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., 
Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., 
Robinson, C.J., and et al. 2009. Introducing mothur: open-source, 
platform-independent, community-supported software for de-
scribing and comparing microbial communities. Appl. Environ. 
Microbiol. 75, 7537–7541.

Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL 
W: improving the sensitivity of progressive multiple sequence 
alignment through sequence weighting, position-specific gap 
penalties and weight matrix choice. Nucleic Acids Res. 22, 4673– 
4680.

Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, 
O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., 
Stackebrandt, E., and et al. 1987. Report of the ad hoc committee 
on reconciliation of approaches to bacterial systematics. Int. J. 
Syst. Bacteriol. 37, 463–464.

Yang, F., Zhu, Q., Tang, D., and Zhao, M. 2009. Using affinity prop-
agation combined post-processing to cluster protein sequences. 
Protein Pept. Lett. 17, 681–689.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


